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The Lur'e solution for an elastic cone has been integrated to give a more reasonable solution of the state 
of stress of a Bridgman anvil. The maximum shear stress at the center axis is plotted as a function of the 
tapered angle. It shows that with a smaller tapered angle the anvil gives higher pressure before it plastically 
yields. It is estimated the maximum pressure can be achieved in a Drickamer-type apparatus with pistons 
made of maraging steel is around 85 kbar and that of cemented tungsten carbide is around 300 kbar. Based 
on published claims of achieved pressures, the maximum pressure capability of sintered-diamond compact 
is greater than 1.2 Mbar and that of a single-crystal diamond could possible be as high as 3.2 Mbar. 

PACS numbers: 62.50.+p, 07.35. + k 

I. INTRODUCTION 

The yield strength of a Bridgman anvil is an impor
tant parameter in estimating the maximum pressure 
that can be achieved in a Bridgman opposed anvil 
apparatus or a standard Drickamer-type apparatus. 
Unfortunately, the materials for making these pistons, 
such as grade 999 CarboloyT cemented tungsten carbide, 
sintered diamond, and single-crystal diamond all frac
ture in a brittle fashion with negligible plastiC deforma
tion. Therefore, the yield strengths of these materials 
at room temperature are usually unknown. However, 
the tip of the Bridgman anvil, while under compression 
with proper support, provides a sufficiently large 
hydrostatiC stress component such that the plastic de
formation of these materials is possible. Recently, 
Ruoff and Wanagel1 by apprOximate analySiS of the state 
of stress in supported opposed anvils and by the mea
surement of the pressure at which the anvil tips exhibit 
a permanent deviation from planarity were able to esti
mate the yield stress of the cemented tungsten carbide. 
It is shown in the present paper that the Lur'e solution2 

they had used can be integrated to give a more reason
able solution of this problem; the maximum shear stress 
at the center axis can be obtained as a function of the 
tapered angle of the anvil. In Sec. III the maximum 
pressure achievable with pistons made of different 
materials is discussed. 

II. THEORETICAL 

The standard Drickamer-type apparatus consists of 
two opposed tungsten carbide pistons placed in a cylin
der with the space between them filled with pyrophyllite . 
The Bridgman opposed anvil apparatus is more or less 
the same; the difference is that there is no support over 
the conical flanks of the pistons. The specimen is 
encased in a circular pyrophyllite ring along with two 
disks and is placed in between the two anvils. It has 
been shown by Forsgren and Drickamer3 that the pres
sure on the anvil tip is more or less uniform. However, 
it should be noted that it is only true when the sample 
thickness (i. e., the gap between the opposed anvils) is 
very small. It was shown by Myers et al. 4 that the pres
sure distribution over the flat surface of the anvil de
pends strongly upon the diameter-to-thickness ratio of 
the sample. Recently, Bundys also showed that the slope 
of the pressure on the flat surface versus the applied 
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load increases with decreaSing gap thickness. There
fore, it can be concluded that in a Drickamer apparatus 
with a very thin sample, the pressure on the flat is 
apprOximately uniform to the edge of the circular flat 
but then decreases rapidly over the tapered surface. 
However, for a thick sample, the pressure on the flat 
has a Gaussian-type distribution. 6 The latter is also 
true for opposed anvil apparatus. In the present paper, 
we will consider a situation where the flat surface of 
radius a of the anvil is subject to a uniform pressure as 
shown in Fig. l(a). This approximates the case of a 
very thin sample. We shall now proceed to find the state 
of stress inSide the anvil. 

Lur 'e 2 has shown the elastic solution for the case in 
~hich a point load is applied at the vertex of a cone and 
acts inward along the axis of the cone. His solution in 
spherical coordinates is as follows: 

C 
(JR = Ji.2 (1 +cosy -A cos B), 

(J = £ (cosB(cosB - cosy) ) , 
8 R2 \ 1 +cos8 

C {cosB - cosy \ 
(J I/> = Ji.2 \ 1 + cos B- 1 + cos B J ' 

(1 ) 

(] = £(sinB(cosB - cosy) ), 
R8 R2 1 +cosB 

where 

Q(m -2) 
C = 81T(m _ 1) , 

4F(m -1) 
Q = m(l - cos3y) - (m - 2) cosy(l - cosy) 

4m-2 
A=---, 

m-2 

and m = 1/11, II is Poisson's ratiO, y is the half-apex
angle of the cone, F is the force acting along the cone 
axiS, and Rand B are shown in Fig. l(b). NOW, in order 
to obtain a solution for the case of Fig. l(a), we inte
grate the Lur'e solution2 with the vertex of the cone 
traCing out a circular area with the diameter equal to 
that in Fig. l(a). This is the same as Timoshenko and 
Goodier7 did for the solution of the Boussinescq prob
lem. For convenience in later analySiS, we shall trans
form the stress tensor components to a cylindrical 
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FIG. 1. (a) Side view of anvil with uniform loading. (b) Cone 
with a point load at the vertex. 

coordinates by using the following equations : 

a. = aR cos2 0 +a9 sin20 - 2aR9 sinO cosO, 

a, = aR sin2 0 +a9 cos2 0 +2aR9 sinO cosO, 

ar6 = (aR -(9) cosO sinO +aR9(cos2 0 -sin2 0). 

After integration, we obtain the stress distribution 
along the z axis as follows : 

a.=21TC[-t(A -1)(1-cos 3 fJ) +cosy(1-cosf3)), 

a, = a., = 1TC[tCA -1)(1 - cos3 f3) 

+(2 -A -cosy)(1-cosfJ»), 

where 

cosfJ= [z / (a2 + z2)1/2). 

(2) 

(3) 

When y = 90°, this solution becomes exact and reduces 
to that of Timoshenko and Goodier 7 on the Boussinescq 
problem, i. e., a uniform pressure acting normally 
on a circular area of radius a on the planar boundary 
of a semi-infinite medium. For y slightly less than 90°, 
or small tapered angle Q (a = 90° - y), this solution 
should be very close to the exact solution. 

It is easily shown that the shear stress Ha., -a.) be
comes a maximum along the z axis at a depth 

(4) 

where 

k 
(A +3cosy-2) 

= 3(A-l) , 
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and the shear stress there is 

Ha., -a.)max 

=t1TC[(A -1)(1 - cos3 f3) + (2 -A - 3 cosy)(1 - cosfJ»). 

(5) 

If we use the maximum yield stress criterion of 
Tresca, then yielding occurs when (a., - a. )max = ao, 
where ao is the yield strength of the material. With this 
analytic solution, it enables us to plot the ratio 
(a., -a.)max!a.=o.as a function of the tapered angle. It is 
shown in Fig. 2 for the case of cemented tungsten 
carbide with v = 0.185. From the curve, we see that 
with a smaller tapered angle, one can achieve higher 
pressure before yielding. However, with a very small 
angle (a flat being the limit) and a very small circular 
flat, one should note that the increase of contact area 
due to elastic deformation of the tip would limit the 
maximum pressure geometrically. 

From the solution we obtained, we see that a., a" 
and a fJ are all negative at the tip of the anvil. a, and a. 
are only slightly less in magnitude than a.; because of 
this, there is a large hydrostatic component at the tip 
which prevents the material from brittle fracture and 
also makes the plastic deformation possible. 

III. DISCUSSION 

Now, we shall assume a standard configuration of a 
Drickamer-type apparatus. i. e., tapered angle Q = 18°, 
and proceed to calculate the maximum pressure before 
yielding for anvils of different materials. We shall 
estimate the maximum pressure obtainable with opposed 
anvils made of maraging steel, cemented tungsten 
carbide, single-crystal diamond, and sintered diamond. 

For maraging steel, we have v=0.30. When substi
tuted in Eqs. (3)-(5), we obtain ao= 0.666a. =0 and yield
ing starts at z = O. 702a. With the known yield stress for 
maraging steel equal to 20 kbar, we would expect the 
pressure at the onset of the plastic deformation at 
around 30 kbar. 

For cemented tungsten carbide, we use the value 
v = 0. 185 obtained from elastic constant measurement 
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by Day and Ruoff. 8 We find that 0'0 = 0.7290',=0 and yield
ing begins at the point z = O. 699a. If the onset of plastic 
deformation really starts at a pressure around 110 kbar 
as mentioned in Ref. 1, the yield strength of cemented 
tungsten carbide is around 80 kbar . The above result 
for maraging steel and cemented tungsten carbide is 
only slightly different from that of Ruoff and Wanagel,l 
although the latter used a relatively crude analysis. 

If we had used the Poisson ratio for cemented tung
sten carbide from the direct measurement9 rather than 
that obtained from the ultrasonic work, 8 namely, v 
= 0.19-0. 23, we would have 0'0=0. 7260'~=0 -0. 7040'~.o ' 
Assuming the same value of pressure for the onset of 
the plastic deformation for the anvils, we obtained the 
yield strength of cemented tungsten carbide around 80-
77 kbar. The direct measured yield strength based on 
0. 002% offset is approximately 350000 psi (- 24 kbar). 9 

This should provide the lower bound of the generally 
defined yield strength based on 0.2% offset. 

For Single-crystal diamond, we have used v = 0. 103 
for Poisson's ratio, which is obtained from the data of 
the adiabatic elastic constants measured by McSkimin 
et al. 10 and converted to isothermal ones . We find that 
0'0=0 . 7810'.=0 and yielding begins at z= O. 697a. 

Now, it would be interesting to estimate the maximum 
pressure one can achieve with the Drickamer-type 
apparatus by using pistons of these different materials . 
For pistons made of mar aging steels, Ruoff and 
Wanagelll claimed that a maximum pressure of around 
85 kbar was obtained, i. e, approximately four times the 
yield strength of the marging steel; this result is quite 
interesting, because with strong enough support along 
the conical flanks of the pistons , one can imagine that 
toward the center of the highly pressurized zone the 
state of stress can be approximated by a hollow sphere 
pressurized inside. Then, the well-known result from 
elastic and plastic theory that P = 20'0 InK (assuming no 
work hardening), where K being the radius ratio, would 
tell us that with K = 7 it would give us a maximum pres
sure roughly four times the yield strength. This is 
actually the case too with cemented tungsten carbide 
pistons of K = 10, which is a usual design figure for a 
standard Drickamer-type apparatus, that after heavy 
deformation one usually has a plastic zone around K = 7 
or less. If the value of yield strength is correct, 
namely, 80 kbar, then using cemented tungsten carbide 
one would obtain a maximum pressure around 300 kbar 
with K = 10. However, it seems that the determination 
of the onset of plastic yielding by measuring the perma
nent deformation at the tip of the piston is not a very 
sensitive method. The estimated yield strength could 
possibly be lower. And also, due to the fact that stress/ 
strain curves for steel and cemented tungsten carbide 
are not exactly the same, the analysis made here about 
the maximum pressure is a rough estimate. 

It is understood that in order to effectively use the 
load toward the center area without too much plastic 
deformation along the conical flanks of the anvils, one 
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usually uses the optimum design figure K = 10. Hence, 
the maximum achievable pressure estimated here will 
be based on the value of K = 10, which would generally 
allow a fully plastic zone of K = 7 roughly. One certainly 
can use a value of K much larger than 10. Then he has 
to provide extremely strong support along the conical 
flanks of the anvils in order to have a large enough 
hydrostatic component in that area to prevent the piston 
from failing . In the latter case, however, a larger frac
tion of the total load will be taken by the conical flanks 
of the anvils. 

As for the case of a single-crystal diamond, there is 
no available data on the yield strength. However, it is 
known for some cases in an indentation test, it could 
stand pressure as high as 300 kbar. Although the situa
tion is not completely identical to the anvils we consider 
here, one can roughly estimate a maximum achievable 
pressure of at least 1.2 Mbar. The recent Mao and 
Bell12 experiment with single-crystal-diamond anvils 
indicated that a pressure of 1. 018 Mbar was obtained 
without any deformation of the diamond. If the claimed 
pressure is accurate, that would mean a yield strength 
of 800 kbar which is approximately one-seventh of the 
shear modulus of diamond. Then the maximum achiev
able pressure with a &ingle -crystal diamond could be 
as high as 3. 2 Mbar. 

Bundy5 in a recent experiment with a sintered
diamond tip on a cemented tungsten carbide piston has 
achieved a pressure of approximately 400 kbar without 
any measurable plastic deformation at the tip. No 
Poisson rate is available for the sintered-diamond com
pact; but if the same equation for a single-crystal 
diamond is used, one can estimate a maximum achiev
able pressure of at least 1. 2 Mbar. Since the sintered
diamond anvils have not been tested experimentally to 
determine onset of plastic deformation but do show in
dentation hardness values almost equivalent to those 
obtained for single-crystal diamond, the ultimate pres
sure capability may be as high as for a Single-crystal 
diamond. 
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